
CS193p

Winter 2017

Stanford CS193p
Developing Applications for iOS

Winter 2017

CS193p

Winter 2017

Today
Core Data

Object-Oriented Database

CS193p

Winter 2017

Core Data
Database

Sometimes you need to store large amounts of data or query it in a sophisticated manner.
But we still want it to be object-oriented!

Enter Core Data
Object-oriented database.
Very, very powerful framework in iOS (we will only be covering the absolute basics).

It’s a way of creating an object graph backed by a database
Usually backed by SQL (but also can do XML or just in memory).

How does it work?
Create a visual mapping (using Xcode tool) between database and objects.
Create and query for objects using object-oriented API.
Access the “columns in the database table” using vars on those objects.
Let’s get started by creating that visual map …

CS193p

Winter 2017

The easiest way to get Core Data
in your application is to click here

when creating your project.

Notice this application is called

CoreDataExample …

CS193p

Winter 2017

If you use Use Core Data,

the Model file will be named after your application.

… and it will create a Data Model file.

The Data Model file is sort of like a

storyboard for databases.

CS193p

Winter 2017

Then you’ll have to create
your own Data Model file

using File -> New -> File.

But what if didn’t click Use Core Data?

CS193p

Winter 2017

This
template.

This section.
Don’t accidentally pick this one.

CS193p

Winter 2017

It will ask you for the name of your Model file.

You don’t have to name it after your application if

you don’t want to.

CS193p

Winter 2017

Voilà!

CS193p

Winter 2017

What about that code in
AppDelegate mentioned earlier?

CS193p

Winter 2017

Create another Project.

Just so you can click Use Core Data.

Copy the code for this var

from that Project’s AppDelegate ...

... and then change this string to match
the name of the Model you chose.

You’ll probably also want to copy saveContext()

and change applicationWillTerminate to call self.saveContext().

Here it is!

But how do you get this if you

didn’t click Use Core Data?

CS193p

Winter 2017

A Core Data database stores things in a way that
looks very object-oriented to our code. It has …

Entities (which are like a class)

Attributes (which are like a var)

Relationships (a var that points to other Entities)

This “storyboard” for databases

lets us graphically describe these

Entities, Attributes and Relationships.

CS193p

Winter 2017

Let’s start by adding an Entity

Unfortunately, we don’t have time to
talk about these two other options!

CS193p

Winter 2017

This creates an Entity called “Entity”.

An Entity will appear in our code as an
NSManagedObject (or subclass thereof).

An Entity is analogous to a class.

CS193p

Winter 2017

Let’s rename it to be “Tweet”.

CS193p

Winter 2017

… attributes

(sort of like properties) …

Each Entity can have …

… and Fetched Properties

(but we’re not going to talk about them).

… and relationships

(essentially properties that point to

other objects in the database).

CS193p

Winter 2017

Now we will click here to add some Attributes.

We’ll start with the tweet’s text.

CS193p

Winter 2017

The Attribute’s name can be edited directly.

CS193p

Winter 2017

CS193p

Winter 2017

Notice that we have an error.

That’s because our Attribute needs a type.

We set an Attribute’s type here.

CS193p

Winter 2017

All Attributes are objects.

NSNumber, NSString, etc.

But they can be automatically “bridged”
to Double, Int32, Bool, Data, Date.

Attributes are accessed on our
NSManagedObjects via the methods

value(forKey:) and setValue(_, forKey:).

Or we’ll also see how we can

access Attributes as vars.

Transformable lets you transform from
any data structure to/from Data.

We don’t have time to go into detail on
that one, unfortunately.

CS193p

Winter 2017

No more error!

CS193p

Winter 2017

Here are some more
Attributes.

You can see your Entities and Attributes in
graphical form by clicking here.

CS193p

Winter 2017

This is the same thing we were just
looking at, but in a graphical view.

CS193p

Winter 2017

CS193p

Winter 2017

Let’s add another Entity.

CS193p

Winter 2017

And set its name.

CS193p

Winter 2017

These can be dragged around
and positioned around the

center of the graph.

CS193p

Winter 2017

Attributes can be added in
this editor style as well.

CS193p

Winter 2017

Attribute names can be edited directly …

CS193p

Winter 2017

… or edited via the Inspector.

Attribute names can be edited directly …

CS193p

Winter 2017

There are a number of
advanced features you can

set on an Attribute …

CS193p

Winter 2017

… but we’re just going
to set its type.

CS193p

Winter 2017

Let’s add another Attribute to
the TwitterUser Entity.

CS193p

Winter 2017

This one is the

TwitterUser’s actual name.

CS193p

Winter 2017

So far we’ve only added Attributes.

How about Relationships?

CS193p

Winter 2017

Similar to outlets and actions,
we can ctrl-drag to create

Relationships between Entities.

CS193p

Winter 2017

A Relationship is analogous to a

pointer to another object

(or an NSSet of other objects).

CS193p

Winter 2017

From a Tweet’s perspective,

this Relationship to a TwitterUser is

the “tweeter” of the Tweet …

… so we’ll call the Relationship
tweeter on the Tweet side.

CS193p

Winter 2017

But from the TwitterUser’s perspective, this relationship

is a set of all of the tweets she or he has tweeted.

… so we’ll call
the Relationship
tweets on the

TwitterUser side.

CS193p

Winter 2017

See how Xcode notes the inverse
relationship between tweets and tweeter.

CS193p

Winter 2017

But while a Tweet has only one tweeter,

a TwitterUser can have many tweets.

That makes tweets a “to many” Relationship.

CS193p

Winter 2017

We note that here in the Inspector for tweets.

CS193p

Winter 2017

The type of this Relationship in our Swift
code will be NSSet of NSManagedObject

(since it is a “to many” Relationship).

The type of this Relationship in our

Swift code will be an NSManagedObject

(or a subclass thereof).

The double arrow here means

a “to many” Relationship

(but only in this direction).

CS193p

Winter 2017

The Delete Rule says
what happens to the

pointed-to Tweets if we
delete this TwitterUser.

Nullify means “set the
tweeter pointer to nil”.

CS193p

Winter 2017

Core Data
There are lots of other things you can do

But we are going to focus on Entities, Attributes and Relationships.

So how do you access all of this stuff in your code?
You need an NSManagedObjectContext.
It is the hub around which all Core Data activity turns.

How do I get a context?
You get one out of an NSPersistentContainer.
The code that the Use Core Data button adds creates one for you in your AppDelegate.
(You could easily see how to create multiple of them by looking at that code.)

You can access that AppDelegate var like this …
(UIApplication.shared.delegate as! AppDelegate).persistentContainer

CS193p

Winter 2017

Core Data
Getting the NSManagedObjectContext

We get the context we need from the persistentContainer using its viewContext var.
This returns an NSManagedObjectContext suitable (only) for use on the main queue.
let container = (UIApplication.shared.delegate as! AppDelegate).persistentContainer
let context: NSManagedObjectContext = container.viewContext

CS193p

Winter 2017

Core Data
Convenience
(UIApplication.shared.delegate as! AppDelegate).persistentContainer
… is a kind of messy line of code.
So sometimes we’ll add a static version to AppDelegate …
static var persistentContainer: NSPersistentContainer {

return (UIApplication.shared.delegate as! AppDelegate).persistentContainer
}
… so you can access the container like this …
let coreDataContainer = AppDelegate.persistentContainer
… and possibly even add this static var too …
static var viewContext: NSManagedObjectContext {

return persistentContainer.viewContext
}
… so that we can do this …
let context = AppDelegate.viewContext

CS193p

Winter 2017

Core Data
Okay, we have an NSManagedObjectContext, now what?

Now we use it to insert/delete (and query for) objects in the database.

Inserting objects into the database
let context = AppDelegate.viewContext
let tweet: NSManagedObject =

NSEntityDescription.insertNewObject(forEntityName: “Tweet”, into: context)

Note that this NSEntityDescription class method returns an NSManagedObject instance.
All objects in the database are represented by NSManagedObjects or subclasses thereof.
An instance of NSManagedObject is a manifestation of an Entity in our Core Data Model*.
Attributes of a newly-inserted object will start out nil (unless you specify a default in Xcode).

* i.e., the Data Model that we just graphically built in Xcode!

CS193p

Winter 2017

Core Data
How to access Attributes in an NSManagedObject instance

You can access them using the following two NSKeyValueCoding protocol methods ...
func value(forKey: String) -> Any?
func setValue(Any?, forKey: String)
Using value(forKeyPath:)/setValue(_,forKeyPath:) (with dots) will follow your Relationships!
let username = tweet.value(forKeyPath: “tweeter.name”) as? String

The key is an Attribute name in your data mapping
For example, “created” or “text”.

The value is whatever is stored (or to be stored) in the database
It’ll be nil if nothing has been stored yet (unless Attribute has a default value in Xcode).
Numbers are Double, Int, etc. (if Use Scalar Type checked in Data Model Editor in Xcode).
Binary data values are NSDatas.
Date values are NSDates.
“To-many” relationships are NSSets but can be cast (with as?) to Set<NSManagedObject>
“To-one” relationships are NSManagedObjects.

CS193p

Winter 2017

Core Data
Changes (writes) only happen in memory, until you save

You must explicitly save any changes to a context, but note that this throws.
do {

try context.save()
} catch { // note, by default catch catches any error into a local variable called error

// deal with error
}
Don’t forget to save your changes any time you touch the database!
Of course you will want to group up as many changes into a single save as possible.

CS193p

Winter 2017

Core Data
But calling value(forKey:)/setValue(_,forKey:) is pretty ugly

There’s no type-checking.
And you have a lot of literal strings in your code (e.g. “created”).

What we really want is to set/get using vars!
No problem ... we just create a subclass of NSManagedObject

The subclass will have vars for each attribute in the database.
We name our subclass the same name as the Entity it matches (not strictly required, but do it).
We can get Xcode to generate all the code necessary to make this work.

CS193p

Winter 2017

Xcode will automatically generate a subclass for your Entity
(behind the scenes) with the same name as the Entity

 if this is set to Class Definition.

To get Xcode to help you with a subclass of
NSManagedObject to represent your Entity,

select your Entity and inspect it.

The class will not appear in the Navigator though.

CS193p

Winter 2017

Or you can write the subclass yourself and
pick Category/Extension instead.

Xcode will generate an extension to a class

(named Tweet in this case) which you will create.

The extension adds vars

(and some helper funcs) for your Attributes.

CS193p

Winter 2017

Even though nothing appears in the Navigator,
Xcode has indeed created an extension to a

Tweet class for you behind the scenes.

CS193p

Winter 2017

Usually this is the option we want.

That’s because we might want to add some
code to our Entity-representing subclass.

Let’s add the extension for TwitterUser too.

If we pick Manual/None, that means we’re going to
use value(forKey:), etc., to access our Attributes.

We rarely do it that way.

CS193p

Winter 2017

Since we’ve chosen to create only the extension here,

we now need to write the code for

the Tweet and TwitterUser subclasses ourself …

If your app is built from multiple modules
(like Smashtag is) then you’ll likely want to

choose Current Product Module here.

CS193p

Winter 2017

CS193p

Winter 2017

CS193p

Winter 2017

Remember, all of our Entities in the database are
represented by NSManagedObjects

 (or subclasses thereof which we’re creating right now).

CS193p

Winter 2017

We’ve created a subclass of

NSManagedObject for our Tweet Entity.

This class should have the same
name as the Entity (exactly).

It’s possible to set the class name to be
different than the Entity name in the Entity’s

inspector, but this is not recommended.

CS193p

Winter 2017

But what about this error?

CS193p

Winter 2017

Xcode was not quite smart enough

to import CoreData for us!

CS193p

Winter 2017

So we must do that ourselves.

CS193p

Winter 2017

… and here’s a class for our

TwitterUser Entity.

We can put any TwitterUser-related
code we want in this class.

Best of all there’s that hidden extension of
this class so we can access all of our

Attributes and Relationships using vars!

Let’s take a look at that extension …

CS193p

Winter 2017

This extension to the TwitterUser class allows
us to access all the Attributes using vars.

Note the type here!

It also adds some
convenience funcs for

accessing to-many
Relationships like tweets.

extension

CS193p

Winter 2017

And note this type too.

@NSManaged is some magic that lets Swift know that the
NSManagedObject superclass is going to handle

these properties in a special way

(it will basically do value(forKey:)/setValue(_,forKey:)).

This is a convenience method to create a
fetch request. More on that later.

Here’s the one for Tweet …

CS193p

Winter 2017

Core Data
So how do I access my Entities with these subclasses?

// let’s create an instance of the Tweet Entity in the database …
let context = AppDelegate.viewContext
if let tweet = Tweet(context: context) {

tweet.text = “140 characters of pure joy”
tweet.created = Date() as NSDate
let joe = TwitterUser(context: tweet.managedObjectContext)
tweet.tweeter = joe
tweet.tweeter.name = “Joe Schmo”

}
Note that we don’t have to use that ugly NSEntityDescription method to create an Entity.

CS193p

Winter 2017

Core Data
So how do I access my Entities with these subclasses?

// let’s create an instance of the Tweet Entity in the database …

let context = AppDelegate.viewContext

if let tweet = Tweet(context: context) {
 tweet.text = “140 characters of pure joy”
 tweet.created = Date() as NSDate
 let joe = TwitterUser(context: tweet.managedObjectContext)

 tweet.tweeter = joe

 tweet.tweeter.name = “Joe Schmo”
}
This is nicer than setValue(“140 characters of pure joy”, forKey: “text”)

CS193p

Winter 2017

Core Data
So how do I access my Entities with these subclasses?

// let’s create an instance of the Tweet Entity in the database …

let context = AppDelegate.viewContext

if let tweet = Tweet(context: context) {
 tweet.text = “140 characters of pure joy”
 tweet.created = Date() as NSDate
 let joe = TwitterUser(context: tweet.managedObjectContext)

 tweet.tweeter = joe

 tweet.tweeter.name = “Joe Schmo”
}
This is nicer than setValue(Date() as NSDate, forKey: “created”)
And Swift can type-check to be sure you’re actually passing an NSDate here

 (versus the value being Any? and thus un-type-checkable).

CS193p

Winter 2017

Core Data
So how do I access my Entities with these subclasses?

// let’s create an instance of the Tweet Entity in the database …

let context = AppDelegate.viewContext

if let tweet = Tweet(context: context) {
 tweet.text = “140 characters of pure joy”
 tweet.created = Date() as NSDate
 let joe = TwitterUser(context: tweet.managedObjectContext)

 tweet.tweeter = joe

 tweet.tweeter.name = “Joe Schmo”
}
Setting the value of a Relationship is no different than setting any other Attribute value.

And this will automatically add this tweet to joe’s tweets Relationship too!

if let joesTweets = joe.tweets as? Set<Tweet> { // joe.tweets is an NSSet, thus as
 if joesTweets.contains(tweet) { print(“yes!”) } // yes!
}

CS193p

Winter 2017

Core Data
So how do I access my Entities with these subclasses?

// let’s create an instance of the Tweet Entity in the database …

let context = AppDelegate.viewContext

if let tweet = Tweet(context: context) {
 tweet.text = “140 characters of pure joy”
 tweet.created = Date() as NSDate
 let joe = TwitterUser(context: tweet.managedObjectContext)

 tweet.tweeter = joe is the same as joe.addToTweets(tweet)

 tweet.tweeter.name = “Joe Schmo”
}
Xcode also generates some convenience functions for “to-many” relationships.

For example, for TwitterUser, it creates an addToTweets(Tweet) function.

You can use this to add a Tweet to a TwitterUser’s tweets Relationship.

CS193p

Winter 2017

Core Data
So how do I access my Entities with these subclasses?

// let’s create an instance of the Tweet Entity in the database …

let context = AppDelegate.viewContext

if let tweet = Tweet(context: context) {
 tweet.text = “140 characters of pure joy”
 tweet.created = Date() as NSDate
 let joe = TwitterUser(context: tweet.managedObjectContext)

 joe.addToTweets(tweet)

 tweet.tweeter.name = “Joe Schmo”
}
Every NSManagedObject knows the managedObjectContext it is in.

So we could use that fact to create this TwitterUser in the same context as the tweet is in.

Of course, we could have also just used context here.

CS193p

Winter 2017

Core Data
So how do I access my Entities with these subclasses?

// let’s create an instance of the Tweet Entity in the database …

let context = AppDelegate.viewContext

if let tweet = Tweet(context: context) {
 tweet.text = “140 characters of pure joy”
 tweet.created = Date() as NSDate
 let joe = TwitterUser(context: tweet.managedObjectContext)

 joe.addToTweets(tweet)

 tweet.tweeter.name = “Joe Schmo”
}
Relationships can be traversed using “dot notation.”

tweet.tweeter is a TwitterUser, so tweet.tweeter.name is the TwitterUser’s name.

This is much nicer that value(forKeyPath:) because it is type-checked at every level.

CS193p

Winter 2017

Scalar Types
Scalars

By default Attributes come through as objects (e.g. NSNumber)
If you want as normal Swift types (e.g. Int32), inspect them in the Data Model and say so

This will usually be the default for numeric values.

CS193p

Winter 2017

Deletion
Deletion

Deleting objects from the database is easy (sometimes too easy!)
managedObjectContext.delete(_ object: tweet)
Relationships will be updated for you (if you set Delete Rule for Relationships properly).
Don’t keep any strong pointers to tweet after you delete it!

prepareForDeletion
This is a method we can implement in our NSManagedObject subclass ...
func prepareForDeletion()
{

// if this method were in the Tweet class
// we wouldn’t have to remove ourselves from tweeter.tweets (that happens automatically)
// but if TwitterUser had, for example, a “number of retweets” attribute,
// and if this Tweet were a retweet
// then we might adjust it down by one here (e.g. tweeter.retweetCount -= 1).

}

CS193p

Winter 2017

Querying
So far you can ...

Create objects in the database: NSEntityDescription or Tweet(context: …)
Get/set properties with value(forKey:)/setValue(_,forKey:) or vars in a custom subclass.
Delete objects using the NSManagedObjectContext delete() method.

One very important thing left to know how to do: QUERY
Basically you need to be able to retrieve objects from the database, not just create new ones.
You do this by executing an NSFetchRequest in your NSManagedObjectContext.

Three important things involved in creating an NSFetchRequest
1. Entity to fetch (required)

3. NSPredicate specifying which of those Entities to fetch (optional, default is all of them)
2. NSSortDescriptors to specify the order in which the Array of fetched objects are returned

CS193p

Winter 2017

Querying
Creating an NSFetchRequest

We’ll consider each of these lines of code one by one ...
let request: NSFetchRequest<Tweet> = Tweet.fetchRequest()
request.sortDescriptors = [sortDescriptor1, sortDescriptor2, …]
request.predicate = ...

CS193p

Winter 2017

Querying
Specifying the kind of Entity we want to fetch
let request: NSFetchRequest<Tweet> = Tweet.fetchRequest()
(note this is a rare circumstance where Swift cannot infer the type)

A given fetch returns objects all of the same kind of Entity.
You can’t have a fetch that returns some Tweets and some TwitterUsers (it’s one or the other).
NSFetchRequest is a generic type so that the Array<Tweet> that is fetched can also be typed.

CS193p

Winter 2017

Querying
NSSortDescriptor
When we execute a fetch request, it’s going to return an Array of NSManagedObjects.
Arrays are “ordered,” of course, so we should specify that order when we fetch.
We do that by giving the fetch request a list of “sort descriptors” that describe what to sort by.
let sortDescriptor = NSSortDescriptor(

key: “screenName”, ascending: true,
selector: #selector(NSString.localizedStandardCompare(_:)) // can skip this

)
The selector: argument is just a method (conceptually) sent to each object to compare it to others.
Some of these “methods” might be smart (i.e. they can happen on the database side).
It is usually just compare:, but for NSString there are other options (see documentation).
It also has to be exposed to the Objective-C runtime (thus NSString, not String).
localizedStandardCompare is for ordering strings like the Finder on the Mac does (very common).
We give an Array of these NSSortDescriptors to the NSFetchRequest because sometimes

we want to sort first by one key, then, within that sort, by another.
Example: [lastNameSortDescriptor, firstNameSortDescriptor]

CS193p

Winter 2017

Querying
NSPredicate
This is the guts of how we specify exactly which objects we want from the database.
You create them with a format string with strong semantic meaning (see NSPredicate doc).
Note that we use %@ (more like printf) rather than \(expression) to specify variable data.
let searchString = “foo”
let predicate = NSPredicate(format: “text contains[c] %@“, searchString)
let joe: TwitterUser = ... // a TwitterUser we inserted or queried from the database
let predicate = NSPredicate(format: “tweeter = %@ && created > %@”, joe, aDate)
let predicate = NSPredicate(format: “tweeter.screenName = %@“, “CS193p”)
The above would all be predicates for searches in the Tweet table only.
Here’s a predicate for an interesting search for TwitterUsers instead …
let predicate = NSPredicate(format: “tweets.text contains %@“, searchString)
This would be used to find TwitterUsers (not Tweets) who have tweets that contain the string.

CS193p

Winter 2017

Querying
NSCompoundPredicate

You can use AND and OR inside a predicate string, e.g. “(name = %@) OR (title = %@)”
Or you can combine NSPredicate objects with special NSCompoundPredicates.
let predicates = [predicate1, predicate2]
let andPredicate = NSCompoundPredicate(andPredicateWithSubpredicates: predicates)
This andPredicate is “predicate1 AND predicate2”. OR available too, of course.

Function Predicates
Can actually do predicates like “tweets.@count > 5” (TwitterUsers with more than 5 tweets).
@count is a function (there are others) executed in the database itself.

CS193p

Winter 2017

Querying
Putting it all together

Let’s say we want to query for all TwitterUsers ...
let request: NSFetchRequest<TwitterUser> = TwitterUser.fetchRequest()
... who have created a tweet in the last 24 hours ...
let yesterday = Date(timeIntervalSinceNow:-24*60*60) as NSDate
request.predicate = NSPredicate(format: “any tweets.created > %@”, yesterday)
... sorted by the TwitterUser’s name ...
request.sortDescriptors = [NSSortDescriptor(key: “name”, ascending: true)]

CS193p

Winter 2017

Querying
Executing the fetch
let context = AppDelegate.viewContext
let recentTweeters = try? context.fetch(request)

The try? means “try this and if it throws an error, just give me nil back.”
We could, of course, use a normal try inside a do { } and catch errors if we were interested.

Otherwise this fetch method …
Returns an empty Array (not nil) if it succeeds and there are no matches in the database.
Returns an Array of NSManagedObjects (or subclasses thereof) if there were any matches.

CS193p

Winter 2017

Query Results
Faulting

The above fetch does not necessarily fetch any actual data.
It could be an Array of “as yet unfaulted” objects, waiting for you to access their attributes.
Core Data is very smart about “faulting” the data in as it is actually accessed.
For example, if you did something like this ...
for user in recentTweeters {

print(“fetched user \(user)”)
}
You may or may not see the names of the users in the output.
You might just see “unfaulted object”, depending on whether it has already fetched them.
But if you did this ...
for user in recentTweeters {

print(“fetched user named \(user.name)”)
}
... then you would definitely fault all these TwitterUsers in from the database.
That’s because in the second case, you actually access the NSManagedObject’s data.

CS193p

Winter 2017

Core Data Thread Safety
NSManagedObjectContext is not thread safe
Luckily, Core Data access is usually very fast, so multithreading is only rarely needed.
NSManagedObjectContexts are created using a queue-based concurrency model.
This means that you can only touch a context and its NSMO’s in the queue it was created on.
Often we use only the main queue and its AppDelegate.viewContext, so it’s not an issue.

Thread-Safe Access to an NSManagedObjectContext
context.performBlock { // or performBlockAndWait until it finishes

// do stuff with context (this will happen in its safe Q (the Q it was created on))
}
Note that the Q might well be the main Q, so you’re not necessarily getting “multithreaded.”
It’s generally a good idea to wrap all your Core Data code using this.
Although if you have no multithreaded code at all in your app, you can probably skip it.
It won’t cost anything if it’s not in a multithreaded situation.

CS193p

Winter 2017

Core Data Thread Safety
Convenient way to do database stuff in the background

The persistentContainer has a simple method for doing database stuff in the background
AppDelegate.persistentContainer.performBackgroundTask { context in

// do some CoreData stuff using the passed-in context
// this closure is not the main queue, so don’t do UI stuff here (dispatch back if needed)
// and don’t use AppDelegate.viewContext here, use the passed context
// you don’t have to use NSManagedObjectContext’s perform method here either
// since you’re implicitly doing this block on that passed context’s thread
try? context.save() // don’t forget this (and catch errors if needed)

}
This would generally only be needed if you’re doing a big update.
You’d want to see that some Core Data update is a performance problem in Instruments first.
For small queries and small updates, doing it on the main queue is fine.

CS193p

Winter 2017

Core Data
There is so much more (that we don’t have time to talk about)!

Optimistic locking (deleteConflictsForObject)
Rolling back unsaved changes
Undo/Redo
Staleness (how long after a fetch until a refetch of an object is required?)

CS193p

Winter 2017

Core Data and UITableView
NSFetchedResultsController
Hooks an NSFetchRequest up to a UITableViewController.
Usually you’ll have an NSFetchedResultsController var in your UITableViewController.
It will be hooked up to an NSFetchRequest that returns the data you want to show.
Then use an NSFRC to answer all of your UITableViewDataSource protocol’s questions!

Implementation of UITableViewDataSource ...
var fetchedResultsController = NSFetchedResultsController… // more on this in a moment
func numberOfSectionsInTableView(sender: UITableView) -> Int {

return fetchedResultsController?.sections?.count ?? 1
}

func tableView(sender: UITableView, numberOfRowsInSection section: Int) -> Int {
if let sections = fetchedResultsController?.sections, sections.count > 0 {

return sections[section].numberOfObjects
} else {

return 0
}

}

CS193p

Winter 2017

NSFetchedResultsController
Implementing tableView(_, cellForRowAt indexPath:)

What about cellForRowAt?
You’ll need this important NSFetchedResultsController method …
func object(at indexPath: NSIndexPath) -> NSManagedObject
Here’s how you would use it …
func tableView(_ tv: UITableView, cellForRowAt indexPath: NSIndexPath) -> UITableViewCell
{

let cell = tv.dequeue…
if let obj = fetchedResultsController.object(at: indexPath) {

// load up the cell based on the properties of the obj
// obj will be an NSManagedObject (or subclass thereof) that fetches into this row

}
return cell

}

CS193p

Winter 2017

How do you create an NSFetchedResultsController?
Just need the NSFetchRequest to drive it (and a NSManagedObjectContext to fetch from).
Let's say we want to show all tweets posted by someone with the name theName in our table:

let frc = NSFetchedResultsController<Tweet>(// note this is a generic type
 fetchRequest: request,
 managedObjectContext: context,
 sectionNameKeyPath: keyThatSaysWhichAttributeIsTheSectionName,
 cacheName: “MyTwitterQueryCache”) // careful!

NSFetchedResultsController

let request: NSFetchRequest<Tweet> = Tweet.fetchRequest()
request.sortDescriptors = [NSSortDescriptor(key: “created” ...)]
request.predicate = NSPredicate(format: “tweeter.name = %@”, theName)

Be sure that any cacheName you use is always associated with exactly the same request.
It’s okay to specify nil for the cacheName (no cacheing of fetch results in that case).

It is critical that the sortDescriptor matches up with the keyThatSaysWhichAttribute...
The results must sort such that all objects in the first section come first, second second, etc.
If keyThatSaysWhichAttributeIsTheSectionName is nil, your table will be one big section.

CS193p

Winter 2017

NSFetchedResultsController
NSFetchedResultsController also “watches” Core Data
And automatically will notify your UITableView if something changes that might affect it!
When it notices a change, it sends message like this to its delegate ...
func controller(NSFetchedResultsController,

didChange: Any,
atIndexPath: NSIndexPath?,

forChangeType: NSFetchedResultsChangeType,
newIndexPath: NSIndexPath?)

{

// here you are supposed call appropriate UITableView methods to update rows
// but don’t worry, we’re going to make it easy on you ...

}

FetchedResultsTableViewController
Our demo today (and Assignment 5) will include a class FetchedResultsTableViewController
If you make your controller be a subclass of it, you’ll get the “watching” code for free

CS193p

Winter 2017

Core Data and UITableView
 Things to remember to do …

1. Subclass FetchedResultsTableViewController to get NSFetchedResultsControllerDelegate
2. Add a var called fetchedResultsController initialized with the NSFetchRequest you want

3. Implement your UITableViewDataSource methods using this fetchedResultsController var

You can get the code for #3 from the slides of this presentation (or from the demo).

 Then …

After you set the value of your fetchedResultsController ...

try? fetchedResultsController?.performFetch() // would be better to catch errors!
tableView.reloadData()
Your table view should then be off and running and tracking changes in the database!

To get those changes to appear in your table, set yourself as the NSFRC’s delegate:

fetchedResultsController?.delegate = self
This will work if you inherit from FetchedResultsTableViewController.

